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Thermodynamics of the Farey Fraction Spin Chain
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We consider the Farey fraction spin chain, a one-dimensional model defined
on (the matrices generating) the Farey fractions. We extend previous work on
the thermodynamics of this model by introducing an external field h. From
rigorous and more heuristic arguments, we determine the phase diagram and
phase transition behavior of the extended model. Our results are fully con-
sistent with scaling theory (for the case when a “marginal” field is present)
despite the unusual nature of the transition for h=0, and the presence of long-
range forces.
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1. INTRODUCTION

Phase transitions in one-dimensional systems are unusual, essentially
because, as long as the interactions are of finite range and strength, any
putative ordered state at finite temperature will be disrupted by thermally
induced defects, and a defect in one dimension is very effective at destroy-
ing order. Despite this, there are many examples of one-dimensional sys-
tems that do exhibit a phase transition. The Farey Fraction Spin Chain
(FFSC)(1) is one such case, which has attracted interest from both phys-
icists and mathematicians.(2,4,3) (Since this work uses some methods that
may be unfamiliar to the latter, we include a paragraph at the end of this
section outlining our results from a mathematical viewpoint.)

One can define the FFSC as a periodic chain of sites with two pos-
sible spin states (A or B) at each site. This model is rigorously known
to exhibit a single phase transition at temperature βc = 2(1). The phase
transition itself is most unusual. The low temperature state is completely

1LASST/SERC and Department of Physics & Astronomy, University of Maine, Orono,
Maine 04469; e-mail: jan.fiala@umit.maine.edu

1471

0022-4715/04/0900-1471/0 © 2004 Springer Science+Business Media, Inc.



1472 Fiala and Kleban

ordered.(1,5) In the limit of a long chain, for β > βc, the system is either
all A or all B. Therefore the free energy f is constant and the magne-
tization m (defined via the difference in the number of spins in state A

vs. those in state B) is completely saturated over this entire temperature
range. Thus, even though the system has a phase transition at finite tem-
perature, there are no thermal effects at all in the ordered state. The same
thermodynamics occurs in the Knauf spin chain (KSC),(6,7,10,11) to which
the FFSC is closely related.

At temperatures above the phase transition (for β < βc), fluctuations
occur, and f decreases with temperature. Here the system is paramagnetic,
since (when the external field vanishes, see below) there is no symmetry-
breaking field. Thus as the temperature increases m jumps from its satu-
rated value in the ordered phase to zero in the high-temperature phase(5,7)

(see Fig. 1). (The KSC behaves similarly.)
One-dimensional models with long-range ferromagnetic interactions(8,9)

are known to exhibit a discontinuity inmatβc, but in these cases the jump inm is
less than the saturation value.

The discontinuity in m might suggest a first-order phase transition,
but in our model the behavior with temperature is different. In previous
work, we proved that as a function of temperature, f exhibits a second-
order transition, and the same transition occurs in the KSC and the “Fa-
rey tree” multifractal model.(2)

In beginning the research reported here, our motivation was to see-
whether the phase transition in the FFSC, which seems to mix first- and
second-order behavior, is consistent with scaling theory. Indeed, as will be
made clear, it is, in the “borderline” case when a marginal variable is pres-
ent. In order to see this, we extend the definition of the FFSC to include
a finite external field h. We then determine the phase diagram and free
energy as a function of β and h, using both rigorous and renormalization
group (RG) analysis.

In the following, Section 2 defines the model. Then, in Section 3
we prove the existence of the free energy f with an external field, and
evaluate f for temperatures below the phase transition. In Section 4 we
employ renormalization group arguments to find the free energy and phase
diagram for temperatures above the phase transition. Section 5 considers a

Fig. 1. Free energy and magnetization vs reduced temperature t = βc

β
−1.
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simple model that has very similar thermodynamics but is completely solv-
able. Section 6 summarizes our results. In the Appendix we present some
arguments needed to prove the existence of f (β,h) in Section 3.

Since our results may be of interest to mathematicians who are unfa-
miliar with some of the physics employed herein, we pause to include a
description of them from a more mathematical point of view. Section 2
defines the model and the quantities of interest. More specifically, the par-
tition function ZN is a two-parameter weighted sum over the (matrices
defining the) Farey fractions, and the free energy f then follows from
the limiting procedure defined in (4). The main goal of our work is to
find the analytic behavior of f as a function of the real parameters β,
the inverse temperature (so β > 0 is implicit), and h, the external field.
Regions of parameter space for which f is analytic are (thermodynamic)
phases, and the lines of singularities that separate them are phase bound-
aries. In Section 3 we prove that f (β,h) exists, and compute it exactly at
low temperature (for β >βc), which constitutes part of the ordered phase.
Section 4 uses renormalization group methods to determine f at high tem-
peratures (for β near βc and β < βc). Since this method is not rigor-
ous, from a mathematical point of view the results should be regarded as
conjectures. The main conclusions are the form of the free energy in the
high-temperature phase (29, 30) and the equation for the phase boundary
(31, 32) from which follows the change in magnetization m = −∂f/∂h (34)
and entropy s = β2 ∂f/∂β across the phase boundary. We also find that
the ordered phase, with f = ∓h, extends to β < βc when h is sufficiently
large (see Fig. 2). Section 4.3 gives predictions for the behavior of ZN as
N →∞ near the second-order point (β = βc and h = 0). This is related to
some work in number theory, but unfortunately not yet directly. Section 5
examines an exactly solvable model with certain similarities to the FFSC.

2. DEFINITION OF THE MODEL

The FFSC consists of a periodic chain of N sites with two possible spin
states (A or B) at each site. The interactions are long-range, which allows a
phase transition to exist in this one-dimensional system. Let the matrices

MN :=
N∏

i =1

A1−σi Bσi , σi ∈{0,1}, (1)

where A :=
(

1
1

0
1

)
and B :=

(
1
0

1
1

)
and the dependence of MN on {σi} has

been suppressed. The energy of a particular configuration with N spins in
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Fig. 2. Phase diagram.

an external field h is given as

EN := ln(TN)+h

(
2

N∑
i =1

σi −N

)
with TN := Tr(MN). (2)

Thus our partition function is

ZN(β,h) =
∑
{σi }

Tr(MN)−βe
−βh

(
2
∑N

i =1 σi−N
)
. (3)

This definition extends the Farey fraction spin chain model to non-vanish-
ing external field h. Given the nature of the low-temperature h = 0 system,
it is natural to introduce h in this way.

The free energy is defined as

f (β,h) := −1
β

lim
N→∞

ln ZN(β,h)

N
. (4)

The existence of the free energy f (β,h) follows from simple bounds using
f (β,0) (see Section 3 below).

The definition of the FFSC is somewhat unusual. The partition func-
tion is given in terms of the energy of each possible configuration, rather
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than via a Hamiltonian. In fact, there is no known way to express the
energy exactly in terms of the spin variables(1). Further, numerical results
indicate that when one does, the Hamiltonian has all possible even inter-
actions (and they are all ferromagnetic), so an explicit Hamiltonian repre-
sentation, even if one could find it, would be exceedingly complicated.

Note that for h = 0 there are two ground states with energy E = ln 2.
The other 2N −2 states have energy ln N �E �Nc, where c is a constant.
Therefore the difference between the lowest excited state energy and the
ground state energy diverges as N →∞.

The phase transition in this system(1) occurs in the following way.
Divide the partition function into two terms, one due to the two ground
states, and the other (call it Z′), due to the remaining 2N − 2 states. The
system remains in the ground states, and Z′ →0 as N →∞, until the tem-
perature is high enough that Z′ diverges with N . In Section 5 we examine
a simple model that also exhibits this feature, but is completely solvable.

Our results also apply to the KSC, which has the same thermody-
namics as the FFSC model at h=0 (see ref. 2). An external field may be
included in the KSC in exactly the same way as described above for the
FFSC. The “Farey tree” model of Feigenbaum et al. (12) also has the same
free energy, but it is not clear how to incorporate a field h. Our finite-size
results (see Section 4.3) do apply when h = 0, however.

3. FREE ENERGY WITH AN EXTERNAL FIELD

In this section we show rigorously that f (β,h) exists and that

f (β,h) = −|h|, (5)

for β > βc.
For h > 0 it is easy to see (from Eq. (3)) that

2−βeβhN < ZN(β,h) < ZN(β,0)eβhN . (6)

Using the definition of the free energy then gives

−h�f (β,h)�f (β,0)−h, (7)

where f (β,h) is understood to be defined via (4). Now f (β,0) is rig-
orously known to exist(1). In addition, we know that f (β,0) = 0 for
β �βc

(1), which implies Eq. (5) for h > 0 (h < 0 follows similarly).
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To see that f (β,h) exists for the range 0�β <βc we proceed as
follows (actually, our argument applies for all β �0). We first show that∣∣∣ log ZN+1

N+1 − log ZN

N

∣∣∣→ 0 as N→∞. The result then follows by use of (6). Now

∣∣∣∣N log ZN+1 −N log ZN − log ZN

N(N +1)

∣∣∣∣ �
∣∣∣∣ log ZN+1/ZN

N +1

∣∣∣∣+ 1
N +1

∣∣∣∣ log ZN

N

∣∣∣∣ ,
and we see by Eq. (6) and the existence of f (β,0) that the second term

1
N+1

∣∣∣ log ZN

N

∣∣∣ � K
N+1 for some finite constant K. In the appendix we show

that 2−βe−β|h| � ZN+1
ZN

�2eβ|h| which completes our proof of the existence
of the free energy for all β �0 and h∈R.

We also know rigorously that f (t,0)∼c t
ln t

+ .., where c > 0, t = βc

β
−

1, for t > 0 (see Fig. 1). It follows that f (t, h) must have at least one sin-
gularity between the regions with low and high temperatures, i.e., a phase
transition from the ordered to the high-temperature phase.

Since we can not calculate f (β,h) exactly for β < βc (except for h = 0
and β →βc), we use another method, in the next section, to examine the
thermodynamics.

4. RENORMALIZATION GROUP ANALYSIS

4.1. Mean Field Theory

In mean field theory one assumes that there is an expansion of the
free energy of the form

fMF = a +btM2 +uM4 −ghM +· · · , (8)

where M is the magnetization and the “constants” a, b, u and g are
weakly dependent on the reduced temperature t (defined at the end of Sec-
tion 3) and external field h. Note that u > 0 is required for stability, and
b > 0, g �0 in the high-temperature phase. (The possibility that g = 0 is
ruled out below.)

Minimizing (8) with respect to M, one obtains the free energy and
magnetization in mean field approximation. Explicitly

1. for t > 0 and h �=0 the magnetization

M0 ∼ 1
6

[
u

gh
+
(

2bt

3gh

)3
]− 1

3
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(note the limiting cases M0 ∼ 0 for h = 0 and M0 ∼ 1/6(gh/u)1/3 for
t = 0)

2. for t < 0 and h �=0, but h sufficiently small, the magnetization

M0 ∼
(

b|t |
2u

) 1
2 + gh

4b|t |

(however when
(

gh
2u

)2 +4
(

bt
6u

)3
> 0, M0 is given by the t > 0 formula).

We include this second case only for completeness. Since our system
is completely saturated at low temperatures this result is not employed
in our analysis.

In the following we use the first result in an RG analysis.

4.2. Renormalization Group Analysis

We assume two relevant fields (t and h) and one marginal field
(u). These assumptions are reasonable, since our model has an Ising-like
ordered state, the interactions are (apparently) all ferromagnetic, and there
is a logarithmic term in the free energy.

The infinitesimal renormalization group transformation for the singu-
lar part of the free energy is

fs(t, h, u) = e−d�fs(t (�), h(�), u(�)). (9)

Because of the marginal field u, the analysis is somewhat more compli-
cated than otherwise. We follow the treatment of Cardy (Ref. 13, see also
Wegner(14)). The RG equations take the form

du/d� = −xu2 +· · · (10)

dt/dl = yt t − ztut +· · · (11)

dh/dl = yhh− zhuh+· · · , (12)

where we keep only the most important terms. The omitted terms are
either higher order or go to zero more rapidly with � than those included.
From Eq. (10) we find (note t = t (0), h = h(0), u = u(0))

u(�) = u(0)

1+xu(0)�
. (13)
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Both t and h have the same functional form, namely

ln(t (�0)/t (0)) = yt�0 − zt

x
ln[1+xu(0)�0] (14)

and

ln(h(�0)/h(0)) = yh�0 − zh

x
ln[1+xu(0)�0], (15)

where �0 is such that t (�0) = O(1) or h(�0)=O(1). From (14) we can write

�0 ∼ 1
yt

ln
t0

t
+ zt

xyt

ln
[

1+ x

yt

u ln
t0

t

]
, (16)

where we assume t0/t �1. This result together with Eq. (9) gives us

fs(t, h, u)∼
∣∣∣∣ t

t0

∣∣∣∣
d
yt
[

1+ x

yt

u ln
t0

t

]− zt d
yt x

fs(t (�0), h(�0), u(�0)). (17)

Since the free energy on the RHS is evaluated at �0, which is far from the
critical point, it can be calculated from mean field theory. Above the criti-
cal temperature (t > 0) with small external field h (h(�0)	 t (�0)) we obtain
for the free energy

fs(t (�0), h(�0), u(�0))∼a − 3(gh(�0))
2

16bt (�0)
. (18)

The relation between h(�0) and t (�0) follows from Eqs. (14) and (15).
Eliminating h(�0) allows us to rewrite Eq. (18) as

fs ∼a −
∣∣∣∣ t0t
∣∣∣∣
2 yh

yt

h2
[

1+ x

yt

u ln
t0

t

]2yh

[
zt

yt x
− zh

yh x

] (
− 3g2

16bt (�0)

)
. (19)

Substituting the result into Eq. (9) gives two terms,

∣∣∣∣ t

t0

∣∣∣∣
d
yt
[

1+ x

yt

u ln
t0

t

]− zt d
yt x

a, (20)
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and

∣∣∣∣ t

t0

∣∣∣∣
d
yt

−2 yh
yt

h2
[

1+ x

yt

u ln
t0

t

]− zt d
yt x

+2yh

[
zt

yt x
− zh

yh x

] (
− 3g2

16bt (�0)

)
. (21)

The first term can be compared with the exact result at h=0 (see Section
1). It follows that

d

yt

=1= zt

x
. (22)

The second term gives us the dependence on external field. Eliminating
t (�0) instead of h(�0) we obtain

1
t

∣∣∣∣ h

h0

∣∣∣∣
d
yh

+ yt
yh

[
1+ x

yt

u ln
t0

t

]− zh d

yh x
−yt

[
zh

yh x
− zt

yt x

] (
−3(gh(�0))

2

16b

)
. (23)

Equating the two expressions (21) and (23) for the same term in the
free energy gives us the RG eigenvalues

d

yt

= d

yh

=1, (24)

where d is the dimensionality of the system. This is of course one for
our model, but since none of our results require setting d = 1 we leave it
unspecified.

Finally we can write down the singular part of the free energy for the
high-temperature phase

fs(t, h, u)∼
∣∣∣∣ t

t0

∣∣∣∣
[

x

yt

u ln
t0

t

]−1

a − h2

t

[
x

yt

u ln
t0

t

]1− zh
x

(
3g2

16b

)
. (25)

Since f < 0 for h=0 in this phase, Eq. (25) implies that a < 0.
For the ordered phase we know rigorously that the free energy has no

temperature dependence for h=0. The spins are all up or all down. When
we add an external field it will break the symmetry and all the spins will
be oriented in the field direction. Thus the free energy at �0 is

fs(t (�0), h(�0), u(�0))=−|h|(�0). (26)
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Proceeding as in the derivation of Eq. (17) from Eqs. (9) and (14) we get

fs(t, h, u)∼
∣∣∣∣ h

h0

∣∣∣∣
d
yh

[
1+ x

yh

u ln
h0

h

]− zh d

yh x

fs(t (�0), h(�0), u(�0)), (27)

using Eq. (15), (26) and (24) then give

fs(t, h, u)∼−|h|
[

1+ x

yh

u ln
h0

h

]− zh
x

. (28)

Because the magnetization in the ordered state is completely saturated the
logarithmic correction must vanish. Therefore zh =0.

Thus the asymptotic form for the free energy of the high-temperature
state is

fs(t, h, u)∼
∣∣∣∣ t

t0

∣∣∣∣
[

x

yt

u ln
t0

t

]−1

a − h2

t

[
x

yt

u ln
t0

t

](
3g2

16b

)
. (29)

We can recast this result more suggestively as

fs(t, h, u)∼fs(t,0, u)− 1
2
h2χ(t,0, u), (30)

where χ =−∂2f/∂h2 is the susceptibility. Note that χ ∼1/fs which is con-
sistent with scaling theory, since (using Eq. (24)), f ∼ t2−α = td/yt = t while
χ ∼ t−γ = t (d−2yh)/yt = t−1. This relation holds regardless of whether we set
the dimensionality d =1 or not. In addition, the coefficient of t

ln t
for the

free energy at h = 0 and t → 0, t > 0 is known exactly(15,16), so that the
combination of constants yt a

|t0|xu
may be determined.

The phase boundary is given by the continuity of the free energy.
Now we expect the ordered phase to exist for β < βc if h is large enough
(this is reflected in the assumption of two relevant fields-if another phase
intervened there would be more). Thus one must equate the two expres-
sions for f . One finds that the phase boundary between the ordered and
high-temperature phase, close to the critical point, follows

|h|∼k
t

ln t/t0
, (31)

where k =
{

8byt

3xug2

[
1−
√

1+ 3ag2

4bt0

]}
. Since f is quadratic in h in the high-

temperature phase, there are in general two solutions with h > 0. However,
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the one at larger h is not physical since it gives rise to a magnetization
m > 1 and violates the convexity of the free energy as well, so we employ
the other.

In order to find the change in magnetization across the phase bound-
ary we use Eq. (31) with constants included

|h|∼ −t

ln t0
t


 8byt

3xug2


1−

√
1+ 3ag2

4bt0




 . (32)

In arriving at Eq. (32), we (as mentioned) chose the root that makes m < 1
in the high-temperature phase. Note that in the limiting case that 3ag2

4bt0
=

−1, m=1 but the two roots coincide.
Now from Eq. (29)

m∼ h

t

[
x

yt

u ln
t0

t

](
3g2

8b

)
. (33)

Eliminating the external field using Eq. (32), and since the magnetization
in the ordered phase takes the values m∼±1, we find

�m∼
√

1+ 3ag2

4bt0
. (34)

Note that t0 is a constant of order one and recall that a < 0, thus on the
phase boundary the discontinuity in magnetization is constant (and less
than one), at least close to the second-order point (we argue below that
g = 0 is not possible in this model). Now we can look at the change in
entropy (per site) s =β2 ∂f/∂β across the phase boundary. We get

�s ∼−2
[

x

yt

u ln
t0

t

]−1

 a

t0
+ 4b

3g2


1−

√
1+ 3ag2

4bt0




 . (35)

These results show that the phase transition is first-order everywhere
except at h=0.

In the limiting case when 3ag2

4bt0
=−1, already mentioned, one finds that

both �m=0 and �s =0. However, it is easy to see that both the suscep-
tibility χ and the specific heat will have a discontinuity across the phase
boundary.
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Note that the magnetization change given by Eq. (34) exhibits a kind
of “discontinuity of the discontinuity”, in that its limiting value as one
approaches the second-order point is not the same as its value at that
point. This is not the case for the entropy change, or for these quantities
in the model examined in Section 5.

Finally, we argue that g = 0 is not possible in the high-temperature
phase. Since the second derivative of f with respect to h at h= 0 is pro-
portional to both g and the susceptibility χ , it suffices to demonstrate that
χ > 0. It is straightforward to show that χ is proportional to 	N

j=1〈s1sj 〉
where the spin variables si :=2σi −1, si ∈{−1,1} (cf. (1)), and the angu-
lar brackets denote a thermal average. Now the j =1 term in this sum is 1,
and due to the ferromagnetic interactions in the spin chain, the remaining
terms cannot be negative. Note that this argument is not completely rig-
orous, since for the FFSC we only have numerical evidence that the inter-
actions are all ferromagnetic. The KSC, on the other hand, is known to
have all interactions ferromagnetic,(5) so that 〈s1sj 〉 > 0 follows from the
GKS inequalities.

4.3. Finite-Size Scaling

We can use our results to make some predictions about finite-size
(i.e., N large but N <∞) effects on the thermodynamics. We make the
standard assumption that the size of our spin chain is a relevant field
with eigenvalue 1. Of course, since our system has long-range interac-
tions the validity of finite-size scaling may be questioned,(13) but it is
still interesting to see the results. The treatment is the same as in the case
of the relevant fields t and h. The renormalization equation for the inverse
size I :=N−1 is then

dI/dl = I − zI uI +· · · . (36)

Thus we get

fs(t, h, u,N−1)∼
∣∣∣∣N0

N

∣∣∣∣
d [

1+x u ln
N

N0

]− zI d

x

×fs(t (�0), h(�0), u(�0),N
−1(�0)). (37)

Note that we do not know the ratio zI /x, however Eq. (37) gives the form
we should observe. More succinctly, for large N , this result predicts that
for small t and h

ln ZN(t, h)∼N1−d [ln N ]−p. (38)
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There is related work in number theory by Kanemitsu(17) (cf. also ref.
18). This paper studies moments of neighboring Farey fraction differences,
which are similar to the “Farey tree” partition function.(12) At h= 0, the
latter has the same thermodynamics as the FFSC(2). However, ref. 17 uses
a definition of the Farey fractions that, at each level, gives a subset of
the Farey fractions employed here, and none of the moments considered
corresponds to β =2 (the point of phase transition). It is interesting that,
despite these differences, terms logarithmic in N appear. More specifically,
the sum of mth (integral) moments of the differences goes as

(ln N)δ2,m

Nm
+O

(
(ln N)h(m)

Nm+g(m)

)
, (39)

for m�2, with g(2)=1, g(3)=2 and g(m)=3 for m�4, and h(m)=1 for
2 �m�4, h(m)=0 for m�5. Now if all the Farey fractions were included
Eq. (39) would apply to the Farey tree partition function with β = 2 m

(cf. (2,12)) so that m�2 would correspond to β �4. It would be interesting
to determine whether Eq. (39) applies to the Farey tree partition function
despite this difference, or to extend Eq. (39) to m=1 to see if it is consis-
tent with Eq. (38).

5. 1-D KDP MODEL WITH NONZERO EXTERNAL FIELD

In this section we consider the one-dimensional KDP (Potassium di-
hydrogen phosphate) model introduced by Nagle.(19) This model’s thermo-
dynamics and energy level structure are similar to the Farey fraction spin
chain, but it is easily solvable. Comparison of the two models thus sheds
some light on the FFSC.

The KDP model exhibits first-order phase transitions only. The origin
of the phase transition is infinite rather than long-range interactions.

The one-dimensional geometry of the model is illustrated in Fig. 3. It
consists of N cells, and each cell contains two dots. Each dot represents
a proton in a hydrogen bond in the KDP molecule. Dots can be on the
left or the right side of a cell. The energy of a neighboring pair of cells

Fig. 3. KDP.
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depends on the arrangement of dots at their common boundary. Only con-
figurations with exactly two dots at each boundary (e.g., A, B and D in
Fig. 3) are allowed, any other configuration (e.g., C in Fig. 3) has (pos-
itively) infinite energy and is therefore omitted. Of the allowed configura-
tions, only two energies occur, 0 (when there are two dots on the same side
of a boundary, as in Fig. 3 D) or ε (when the dots are on opposite sides,
as in Fig. 3 A or B).

Let there be N cells in a chain with periodic boundary conditions.
Then there are two kinds of configurations with finite energy. In the first
type of configuration, each cell has two dots on the same side. There are
two such configurations and the total energy of each is 0. In the second
type of configuration, each cell has one dot on the left and one on the
right. There are 2N such configurations and the total energy of each is Nε.
Thus, the partition function is simply

ZN(β)=2+2N exp (−βNε). (40)

It follows immediately that f = 0 for βε > ln 2 and f = ε − ln 2
β

for
βε ln2. Thus the temperature of the (first-order) phase transition is
Tc = ε < (ln 2) and there is a latent heat with entropy change �s = ln 2.
Clearly, the phase transition mechanism is a simple entropy-energy bal-
ance. At low temperatures, the ground state energy gives the minimal free
energy, while in the high-temperature phase the extra entropy of the addi-
tional states gives a lower free energy.

Next, define the magnetization m as the number of sides of cells with
both dots on one side divided by the number of cells N . Then m= 1 for
β > βc and m=0 for β < βc (so that �m=1 at the phase transition), just
as in the FFSC model.

Following the above definition of the magnetization, we introduce
an external field h by adding an energy ±h/2 to each dot, according to
whether it is on the right or left side of the cell. This gives the extra energy
of an external field acting along the chain. Then the new partition func-
tion has the form

ZN(β,h)=2 cosh(βNh)+2N exp(−βNε). (41)

In the ordered phase Z → exp(±βNh). Thus, the free energy f = ∓h,
where the plus sign is for h > 0 and the minus sign for h < 0, exactly as
in the FFSC. For the high-temperature phase Z → exp

[
N(ln 2 −βε)

]
and

we get the same free energy as when h=0, f = ε − ln 2
β

. The phase bound-

ary is given by h=±εt (see Fig. 4), where t = βc

β
− 1 as before. Note the
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Fig. 4. Phase diagram.

resemblance to the FFSC phase diagram (Fig. 2). Here, as βε → ln 2, h→
0 as it should, while for β → 0 the field h→ ln 2/β. The entropy per site
vanishes everywhere in the ordered phase, while for the high-temperature
phase s = ln 2. Thus, this model has a non-zero latent heat and the phase
transition is first-order everywhere. Note that the change in magnetization
is �m=1 everywhere along the phase boundary between the ordered state
and the high-temperature state.

Now for h=0, the FFSC has two ground states with all spins up
or all spins down and energy independent of length N , just as in the
KDP model. Then, in addition, the FFSC has 2N − 2 states with ener-
gies between ln N and Nc, for some constant c. On the other hand, the
KDP model has just one energy (Nε) for the 2N states corresponding to
the 2N − 2 states of the Farey model. This might suggest that the states
with energies close to ln N are responsible for the logarithmic factor in the
Farey free energy, and thus shift the phase transition from first to second-
order (for h= 0). For h �= 0 the energy of the ln N states is shifted by the
field h to order N , and the phase transition becomes first-order. However
the mechanism of the FFSC phase transition may be more subtle. The
“density of states” (number of configurations with a given energy) for the
FFSC not well-behaved. In fact it is known rigorously that this quantity,
summed over all chain lengths, has a limit distribution.(3)

Note that the free energy just derived is independent of h in the high-
temperature phase. Since this is not what we found for the FFSC, we con-
sider another way to introduce an external field h into the KDP model.
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Fig. 5. Notation.

As before we have four different states for each cell. We index them
with spin-one variables ti and si (si, ti ∈ {0,+1,−1} ) in each cell as in
Fig. 5. Then the energy (for h=0) can be written

H0 = ε

N−1∑
i=1

t2
i t2

i+1 (42)

(assuming, in the sum, that the infinite energy contributions are omitted).
The conditions si + ti =±1 and si ti =0 define the allowed states. We define
the magnetization per site as

m= 1
N

N∑
i=1

(si + ti ). (43)

Note that this definition gives a positive (negative) contribution if the
upper dot in a given cell is on the right (left). (Note also that m2 =

1
N2

∑N
i=1(si + ti )

2 + 1
N2

∑
i �=j (si + ti )(sj + tj ) = 1

N

∑N
j=2(s1 + t1)(sj + tj ) +

1/N .) Hence we can include an external field as follows

H =H0 −h
∑
i=1

(si + ti )=H0 −hNm. (44)

Thus

Z(β,h)= eβNh + e−βNh + e−βεN [2 cosh(βh)]N, (45)

and the free energy in high-temperature phase becomes

f (β,h)= ε − ln(2 cosh(βh))

β
(46)
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or for small h

f ∼−tε − ln 2
2ε(t +1)

h2, (47)

with t = βc

β
−1 as above. The phase boundary is given by

βh= ln
(

2 cosh(βh)
)

−βε. (48)

For βh	1 and h > 0, using βc = ln 2
ε

, this gives

h= ε t + ε ln 2
2

t2 +O(t3), (49)

The phase diagram near the critical point is very close to the previous
one (see Fig. 4). The magnetization in the ordered phase is again indepen-
dent of temperature, i.e., m=±1. In the high-temperature phase we have
m= tanh(βh). Thus the magnetization change across the phase boundary
close to the critical point is �m = 1 − t ln 2. The transition is again first-
order, with the entropy change �s = ln 2(1− ln 2

2 t2). Results for h < 0 fol-
low immediately by symmetry.

6. SUMMARY AND COMMENTS

In this paper, we have extended the definition of the Farey fraction
spin chain to include an external field h. From rigorous and more heu-
ristic arguments, we have determined the phase diagram and phase transi-
tion behavior of the extended model. Our results are fully consistent with
scaling theory (for the case when a “marginal” field is present) despite
the unusual nature of the transition for h = 0, and the presence of long-
range forces. In particular, we find for the renormalization group eigen-
values yh = yt = d, and for the sub-leading eigenvalues zt = x and zh = 0.
We also examine a completely solvable model with very similar thermody-
namics, but for which all phase transitions are first-order.

Appendix A. Appendix Bounds for
ZN+1
ZN

First we introduce some notation (following ref. 2).

We use r
(n)
N := n

(n)
N

d
(n)
N

for the fractions (called Farey fractions), where n

is the order of the Farey fraction in level N . Level N = 0 consists of the
two fractions

{
0
1 , 1

1

}
. Succeeding levels are generated by keeping all the
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fractions from level N in level N +1, and including new fractions. The new
fractions at level N + 1 are defined via d

(2n)

N+1 := d
(n)
N + d

(n+1)
N and n

(2n)

N+1 :=
n

(n)
N +n

(n+1)
N , so that

N =0
{

0
1 , 1

1

}
N =1

{
0
1 , 1

2 , 1
1

}
N =2

{
0
1 , 1

3 , 1
2 , 2

3 , 1
1

}
, etc.

Note that n = 1, . . . ,2N + 1. When the Farey fractions are defined using
matrices (spin states) A and B, the level N + 1 is the number of matrices in
the chains starting with matrix A and hence the length of the spin chain.(1)

Using this notation we can write the partition function Eq. (3)
restricted to chains starting with A

ZA
N(β,h)=

2N∑
n=1

e
−βh

(
2
∑N

i=1 σi−N
)

(d
(n)
N +n

(n+1)
N )β

, β ∈R. (A.1)

Note that the partition function Eq. (3) is the sum of ZA
N(β,h) and

ZB
N(β,h), where the ZB

N(β,h) is the partition function for chains starting
with the matrix B. First we find bounds for ZA

N(β,h) and then prove a
lemma which lets us apply the bounds for ZA

N(β,h) to ZB
N(β,h) also.

Now, when we go from level N to level N + 1 we double the num-
ber of the terms in the partition function. Note that for chains starting
with the matrix A one half of the terms come from matrix products of the
form AMN−1A and the others from products AMN−1B. It is easy to check
that the corresponding traces for given n ∈ {1, . . . ,2N } are d

(2n−1)

N+1 +n
(2n)

N+1
and d

(2n)

N+1 +n
(2n+1)

N+1 , respectively. These traces are multiplied by an h depen-

dent factor e
−βh

(
2
∑N+1

i=1 σi−N−1
)

which is simply eβh raised to the power
(#A−#B), the number of matrices A minus the number of matrices B in
the particular chain. For the terms from products of the form AMN−1A,
it follows on using the definition of the Farey fractions that

e
−βh

(
2
∑N+1

i=1 σi−N−1
)

(d
(2n−1)

N+1 +n
(2n)

N+1)
β

= e
−βh

(
2
∑N

i=1 σi−N
)
+βh

(d
(n)
N +n

(n)
N +n

(n+1)
N )β

� e
−βh

(
2
∑N

i=1 σi−N
)

(d
(n)
N +n

(n+1)
N )β

eβ|h|

and, similarly, for AMN−1B

e
−βh

(
2
∑N+1

i=1 σi−N−1
)

(d
(2n)

N+1 +n
(2n+1)

N+1 )β
= e

−βh
(

2
∑N

i=1 σi−N
)
−βh

(d
(n)
N +d

(n+1)
N +n

(n+1)
N )β

� e
−βh

(
2
∑N

i=1 σi−N
)

(d
(n)
N +n

(n+1)
N )β

eβ|h|.
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For the lower bound we just need the AMN−1A terms

e
−βh

(
2
∑N

i=1 σi−N
)
+βh

(d
(n)
N +n

(n)
N +n

(n+1)
N )β

� e
−βh

(
2
∑N

i=1 σi−N
)

(d
(n)
N +n

(n+1)
N )β

e−β|h|

2β
,

where we used the fact that n
(n)
N �d

(n)
N . Thus we get for ZA

N+1(β, h) =
Z

AMN−1A

N+1 (β, h)+Z
AMN−1B

N+1 (β, h)

2−βe−β|h|ZA
N(β,h)�ZA

N+1(β, h)�2eβ|h|ZA
N(β,h)

for any β �0 and h∈R.

Finally, we prove a lemma which allows us to bound ZB
N(β,h). Con-

sider a (2 × 2) matrix M =
(

m1
m3

m2
m4

)
and define the operator ∼ via M̃ :=(

m4
m2

m3
m1

)
. Then we have the following result.

Lemma 1. Let M = AZ1Z2 . . .ZN , where Zi ∈ {A,B}, with
A =

(
1
1

0
1

)
and B =

(
1
0

1
1

)
. Then M̃ = BZ̃1Z̃2 . . . Z̃N , i.e. the ∼ operator

exchanges A and B.

Proof. We will use mathematical induction. It is easy to see that A=
B̃ and B = Ã. From matrix multiplication follows BM̃ =

(
m2+m4

m2

m1+m3
m1

)
and AM =

(
m1

m1+m3

m2
m2+m4

)
.

Clearly the ∼ operation is a 1-to-1 map of the set of all chains AMN

onto BMN . Furthermore, the magnetic field term in the energy of each
chain changes sign under this operation, so that the bounds just obtained
for ZA

N(β,h) may be applied to ZB
N(β,h). Therefore

2−βe−β|h| � ZN+1

ZN

�2eβ|h|.

Note that the proof is easily adapted to the KSC model.
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